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DEDICATED TO I. 1. SCHOENBERG

We study a class of one-to-one tensor mappings defined on a rectangular region
of the plane. Such mappings are of interest in image processing. computer vision.
biological morphology. cartography. and medical imaging. The mappings are
constructed as tensor-products of univariate functions, and the main result is a set
of constraints on the parameters of the mapping which assure that it is one-to-one.
We illustrate the method by showing how to construct one-to-one mappings using
tensor-product polynomials and tensor-product splines. r, 1993 Academic Press, Inc.

INTRODUCTION

Mappings defined on a rectangular region in the plane are important in
several areas of image processing, computer vision, biological morphology,
cartography, and medical imaging; see [1,2,7,9, to, 14,18-20] and the
references therein. For these applications, one needs the mappings to be
smooth, computationally simple, and one-to-one. Given these requirements,
a natural way to construct such mappings is to use tensor-products of simple
univariate functions such as polynomials. The problem then becomes one
of giving conditions on the parameters of the mapping which guarantee
that it is one-to-one. This problem has been studied for bilinear and
biquadratic polynomials in [9] and [8], respectively.
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In this paper we consider general tensor-products. Our approach to the
problem is simpler and more direct than that in [8,9J, and avoids the
analysis of Jacobian matrices. The paper is organized as follows. In
Section 2 we establish the main result of the paper concerning 1-1
mappings, and in Section 3 we apply it to tensor-product mappings. In
Section 4 we specialize to tensor-product polynomials. In addition to
results for polynomials of general degree, we also show that in the
case of bilinear tensor-polynomials we recover the result of [9J, while for
biquadratic tensor-polynomials the much simpler method presented here
produces conditions which are only slightly more restrictive than those
obtained in [8]. Section 5 is devoted to splines. Our last section contains
several remarks.

2. THE PERTURBED IDENTITY MAP

Let H = I x J be a rectangle in the plane, where without loss of
generality, we may assume that 1= [ -IX, IXJ and J = [ - [3, [3]. In this paper
we shall be interested in transformations T: H -> ~2 defined by

with

T(x, Y) = (u(x, Y), v(x, Y))

u(x, Y) = x + a(x, Y)

v(x, Y) = Y + b(x, Y),

(2.1 )

(2.2)

(2.3 )

where a(x, y) and b(x, y) are continuous functions defined on H.
Clearly, we can think of u(x, y) as a perturbation of x by a(x, y), and

v(x, y) as a perturbation of y by b(x, y). Thus T is a perturbation of the
identity map. If both a and b are zero, then T is the identity mapping, and
H is mapped one-to-one onto itself. In general, the set TH will differ from
H, although it is always a closed connected subset of ~2 with continuous
boundary curves, and if the perturbations are small, is close to H (e.g., in
the Hausdorff metric).

We can now establish the main result of the paper. We denote the
uniform norm of a function I by 11/11.

THEOREM 2.1. Let r> 0 be given. Suppose that a and b are functions on
H with partial derivatives satisfving

1
Ilb,11 <-.. 2 (2.4 )

Then T is one-to-one on H.
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Pro(){ We have to show that if PI := (XI' YI) and P2 := (X2' .h) are
two distinct points in H, then TP, =I- TP 2 ; i.e.,

Let h, := X2- XI and h\ := Y2 - Yj' Then

I'" I"= .' U\(X2, t) dl + . U,(s, YI) ds
y, x\

= j" a,(X2' I)dl+!" [I +a,(s, yd] ds.
\-1 xI

Similarly,

v(x2, Y2)-V(X j , YI)= {" hAs, Ydds+ f' [I +hr(x 2, I)] dl.
Xl Yl

Now there are two cases:

Case I (rh, ~ h,). In this case we have

which asserts that TP 2 =I- TP j •

Case 2 (h, < rh r ). In this case we have

which again asserts that TP 2 =I- TP j • I
The parameter r in Theorem 2.1 allows some flexibility in satisfying

condition (2.4), and indeed, we shall choose different values of r at different
times in the applications below.

3. TENSOR-PRODUCT MAPPINGS

Since we are working on a rectangle H, it is natural to choose the pertur
bation functions a and h in (2.2) and (2.3) to be tensor product functions
of the form

11{/ fi lJ

a(x, y) = L I a,)i. Jx) 7,. Jy)
i~ I i~ I

I1h nh

h(x, Y) = L L hijli,l,(x) 7,. h(Y),
i~ I /~ I

(3.1 )

(3.2)
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where II. Ax), ..., Ina. J\") and I,. h(X), ..., Inh, h(X) are linearly independent sets

of functions defined on I, and I,. "Lv), ... , I'ia , Ay) and luCv), ..., I,'h' h( y) are
similar sets defined on J.

The coefficient matrices A and B can be thought of as control parameters.
The smoothness of the mapping T depends on the smoothness of the
functions appearing in (3. I) and (3.2). For the remainder of this paper we
assume at least that they are continuous and have partial derivatives which
are integrable.

To use Theorem 2.1 in practice, we need to have a convenient way to
check (2.4). The following lemma gives bounds on the partial derivatives of
a and b in terms of the matrices A and B.

LEMMA 3.1. Let a be defined as in (3.1). Then

where

Ila,11 ~ A~;C IIA II and (3.3 )

IIAII =max laul,
iJ

n" ,1</

Aa=max L IIi. ,,(x)l, Aa= max L 10.a(Y)I,
'EI i= I rE J

j~ 1

n" ii{l

A~=max L Il;,)x)l, A;, = max L 17;. Jy )1.
'EI i= I

\'EJ
I~ ,

Analogous bounds also hold for Ilbxll and Ilh,1I in terms of IIBII.

Proof Since

na tilj

a,(x, y)= L L ai,I;,Jx) 0. "Cv),
i~ 1 i~'

(3.4 )

(3.5 )

taking absolute values inside the sums leads immediately to the first
inequality in (3.3). The proofs of the other assertions are similar. I

We can now combine Theorem 2.1 and Lemma 3.1 to obtain the
following

THEOREM 3.2. Suppose that

(3.6a)
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and

(3.6b)

for some r> O. Then T is one-fa-one on H.

In Sections 4 and 5 we apply this theorem using polynomial and spline
basis functions. For ease of notation, throughout the remainder of the paper
we restrict our attention to the case where n = n a = nh, and use the same ten
sor-product basis functions for both of the perturbation functions a(x, y)
and h(x, y) defined in (3.1) and (3.2). In this case, dropping the subscripts
a and h, if we chose r = AA'/AA', then () = 1/(2.1' A) and :5 = 1/(2AA').

4. BIVARIATE POLYNOMIALS

In the previous section we made no special assumptions on the functions
appearing in (3.1) and (3.2) other than that they should be continuous and
have integrable partial derivatives. A natural choice for these functions is
to take them to be polynomials. Polynomials have the advantage that they
are infinitely differentiable, so that T is a very smooth mapping. In
addition, polynomials can be efficiently evaluated by Horner's scheme (or
if values on a raster are needed, by even more efficient raster methods, see
[17, 21]).

Suppose now that

(4.1 )

are points in J, and that Idx), ... , I,,(x) are the corresponding classical
Lagrange polynomials of degree n - 1 given by

(4.2)i= 1, ..., n.1 .(·)=Ilk;<;(x-~k)1''\ \0" ,

Ilk;<; (~i-sd

Similarly, let II(Y)' ... , I,](y) be the Lagrange polynomials of degree n - 1
associated with the points

(4.3 )

in J. Then it is clear that the perturbation functions a and h interpolate in
the sense that

1~ i ~ n, (4.4 )

and

1~ i~n, I ~j~n. (4.5)
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This shows that when we use Lagrange polynomials to construct our
mapping T, the control parameters are nothing more than the values of the
perturbations at the grid points. For polynomials, the quantities A and A
arising in Section 3 are the standard Lebesgue constants about which much
is known; see Remark 3.

We now present two simple applications of Theorem 3.2 involving tensor
polynomials. Our first theorem uses linear polynomials and recovers a
result obtained in [9] by other means.

THEOREM 4.1. Let n = Pi = 2, and suppose that the grid points are chosen
10 be {-a, a} in I and { - fl, fl} in J. Then a sufficient condition for T to
be one-to-one on H is that II A II < al2 and II BII < P12.

Proof Here the Lagrange functions on I are the linear polynomials

Those on J are given by

I ( ) = (fl - y)
1 Y 2fl

and

and

I( )
_(a+x)

2 x - .
2a

l(v)=(fl+y).
2 • 2fl

In this case a and b interpolate at the four corners of the rectangle. Clearly
we have A = A= I, A' = lla, and A' = liP. Now we may apply Theorem 3.2
using r =alfl. I

Our second application involves using quadratic polynomials as dis
cussed in [8].

THEOREM 4.2. Let n = Pi = 3, and suppose that the grid points are chosen
to he { - (X, O. a} in I and { - fl, 0, P} in J. Then a sufficient condition for T
to be one-to-one on H is that II A II < a/lO and II BII < PlIO.

Proof Here the Lagrange functions on I are given by

and I
_x(x+a)

3(X) - 2a 2 '

and those on J are similar. In this case the mapping is defined by interpola
tion at 9 grid points. It is easy to see that

-a~x~O

a~ x ~ a.
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This function takes a maximum value of 5/4 at x = ± ~/2. Thus
A = A= 5/4. To calculate A', we need to consider the function

'P(x) := L 11:(x)l·
i= 1

This function is made up of linear polynomials joined together smoothly at
the three knots - ~/2, 0, and ~/2. For example, it is easy to see that for x
in the interval [~/2, ~J, 'P(x) = 4X/~2, and that the maximum value on this
interval is 4/a and is taken on at x =a. Checking the other intervals (these
functions are always symmetric about 0), we find that the maximum of 'P
on I occurs at ±:x, and so we have A' = 4/a. Similarly, A' = 4/fl. The result
follows from Theorem 3.2 if we choose r = a/fl. I

A sharper version of Theorem 4.2 was proved in [8], where the constant
k appears instead of fa. The proof in [8 J, however, is based on a rather
complicated argument involving the Jacobian of the mapping T. It was
shown there that k is sharp in the sense that if larger perturbations are
allowed, then non one-to-one transformations can be constructed. We now
extend Theorems 4.1 and 4.2 to polynomials of arbitrary degree.

THEOREM 4.3. Let n = ii ~ 4, and suppose the grid points are chosen to he
{a cos((n-l- j) rr/(n-I ))},;:ci in I and (Ii cos((n-I- j) rr/(n-l))}';~6

in 1. Then a sufficient condition for T to he one-to-one on H is that

IIA II < ~/(2C(n - If In(n - I )), II BII < fl/(2C(n - I )2ln (n - I)), (4.6)

where C = 2/rr + l/ln(3) ~ 1.54686.

Proof Combining Eqs. (6) and (45) in Brutman [5J gives A = A~ 1+
(2/rr) In(n - 1)~ C In(n - I) for n ~ 4. Moreover, by a result of Berman (see
[15]), A'~(n-I)2/ct and A'~(n-I)2/fl. The result now follows by
Theorem 3.2 with r = ct/ fl. I

Analogous results for other choices of interpolation points can be
obtained whenever it is possible to estimate both the A and A' constants.

We conclude this section with a different kind of result for polynomials
of arbitrary degree. We now use the classical Bernstein polynomials (cf.
[12 J) as basis functions in the expressions (3.1), (3.2) for the perturbation
functions a and h; i.e., we take

(n - 1)! (:x - x r-1 (~ + x)" i
I ( :r) .= B· (:r)' = -'------,---'-c-':---,--
I" I."" (i _ 1)! (n _ i)! (2~)" 1 '

- - (ii-I)!(fl-y)i '(fl+y)n I

';(y):= Bi.nCv):= (j-I)! (ii-j)! (2fl)'1 I

i = 1, ..., n,

j = 1, ... , ii.

(4.7)

(4.8 )



1-1 BIVARIATE TRANSFORMAnONS 47

One advantage of using these basis functions is that now the coefficient
matrices A and B can be thought of as control polygons for the surfaces a
and b (cf. [6]), allowing a convenient way to modify the mapping T in a
controlled way.

It is clear that these basis functions are positive and sum to one, and
thus A = A= 1. Now

B;. n(x) = -(n - 1) BI, n_ I (x)/2rt,

B;. n(x) = (n - 1)[B; _ I. n _ 1(x) - Bi." _ I (x) ]/2a,

B;,. n(x) = (n - 1) Bn_ I. n 1(x )/2a.

i= 2, ... , n - 1,

These facts imply that A' ~ (n - 1)/rt and A' ~ (n - 1)1{3.

THEOREM 4.4. Let T be defined as in (2.1 )-(2.3) using the Bernstein basis
functions in the expressions (3.1), (3.2) defining the perturbation functions a
and b. Then T is one-to-one on H whenever

II A II<2(n_l) and
{3

IIBII<2(n_l)

Proof The result follows immediately from Theorem 3.2 with r = al{3.

I

5. SPLINES

Another natural way to define the perturbation functions a and b is to
use tensor-product polynomial splines. Given m> 1, let A be the partition
defined by

-'C\:<Ym+1 <Ym+2< ... <Y,,<rt,

-C\:=YI="'=Ym and :X=.Yn+t= ... =J'n+m, (5.1 )

(5.2)

and let N';'(x), ..., N;;'(x) be the usual normalized B-splines of order m
associated with A; see [16]. Similarly, given m> 1, let 1 be the partition
defined by

- {3 < .f'm + 1 < Yrn + 2 < ... < Yn < {3,

64{).cnl-4

{3 - -- =YI= ... =Ym and (5.3 )

(5.4 )
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and let N7-'(y), ... , N;i'(y) be the normalized B-splines of order massociated
with 1. We now define

,I

a(x, y) = I I aijN;n(x) N1'(y)

n ;;

b(x, y) = I I bij N 7'(x) N;,,(y).
i~ 1 j~ 1

(5.5 )

(5.6)

We can now give sufficient conditions for the mapping T to be one-to
one on H.

THEOREM 5.1. Let T be the mapping defined in (2.1 H2.3) using a and b
as defined in (5.5), (5.6), and let

,;= min LVi+l-yJ
m~i~n

and h= mill (Yi+ 1- YJ·
nJ~j:S;,ii

(5.7)

Then T is one-to-one on H whenever

IIAII < h/4 and IIBII < h/4. (5.8 )

If Ire choose equally spaced knots, these conditions become

IIA II ~ a/2(n - m + I), II BII ~ f3/2(ii - m+ I) (5.9)

Proof It is well known (cf. [16]) that the normalized B-splines are
positive and add to one. This implies that the constants A and A defined
in Lemma 3.1 are both equal to 1. Now to bound the constant A' defined
in (3.5), we use the fact (cf. Theorem 4.16 of [16]) that

(
Nm I( ) Nm l() )

D. N m( ) = ( _ I) ,x _ 1+ I X
< 1 X m .

(Yi+m-l-Yi) (Yi+m-y,+l)

This implies that

n 2 n 2
'" ID N m

( )1"::::- '" N m
--

1
( )--1... x i X "'hi.... iX-h'

j= I 1= 2

We conclude that A' = 2/h. A similar analysis implies A' = 2/h, and the
sufficiency of conditions (5.8) follows. Finally, for equally spaced knots, we
have h= 1/(n+ I-m) and h= I/(ii+ I-m). I

The bounds on the sizes of A and Bin (5.8) are independent of the order
m of the splines, and depend only on the knot spacing. It is easy to see that
to get the largest degree of freedom in choosing the parameters A and B
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(i.e., the largest constants on the right-hand sides of the inequalities in
(5.8)), we should choose the knots to be equally spaced.

The coefficients aij and bij in (5.5) and (5.6) can be thought of as control
parameters for the mapping T. Because of the local support properties of
the B-splines, if we change the value of one of these parameters, say aij'
then it affects the mapping only locally; in particular, for (x, y) in the rec
tangle Hij:= [y;, Y;+m] X [Yj' Yj+m] which supports the B-spline N'('Nt
Thus, the matrices A and B can be thought of as control nets, and used
much in the same way as they are used in designing surfaces in Computer
Aided Geometric Design (cf. [6]).

In some applications, it may be desirable to control the mapping by
specifying its values on a grid of points lying in H. Suppose we are given
grid points as in (4.1), (4.3), and suppose we are given matrices Z = (z v. /l)
and Z= (2"./l) of real numbers. Assume now that

N'('(¢;) >0,

Nt('1j) >0,

i= 1, ..., n

j= 1, ..., ii.

(5.10 )

(5.11 )

Then itis well-known [16] that we can find A by solving the interpolation
problem

a( ~ v' '1/l) = zv. /l' v = 1, ..., n, f.1 = 1, ..., ii, (5.12)

and we can find the coefficients B by solving the interpolation problem

v = 1, ..., n, f.1 = 1, ..., ii. (5.13 )

Indeed, the conditions (5.10), (5.11) ensure that the interpolation problems
have a unique solution, and they can be solved efficiently by standard
tensor-methods (cr. [16]). For example, (5.12) can be written as

where G is the n x n matrix with entries

(5.14 )

i,j=I, ... ,n, (5.15 )

and where G is the analogous ii x ii matrix. We now illustrate this method
for linear splines.

THEOREM 5.2. Let m = iii = 2 so that we are working ~vith bilinear
splines, and suppose that the knots are equally spaced in both (5.2) and (5.4 ).
Suppose the grid points are chosen as

~i=Yi+l' i=I, ...,n, '1;=Yj+l' j= 1, ... , ii.
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Then a sufficient condition for T to be one-tv-one on H is that

IIA II < 'Y./2(n - I) and II BII < {3/2(ii - I). (5.16 )

In terms of the values 2 and 2 of the perturbations a and b on the grid points
(~i' IJJ, a sufficient condition is that Z and 2 satisfy the same inequalities as
A and B.

Proof In this case, the matrices G and G are the identity matrices, and
so A = 2 and B = 2. The result follows from Theorem 5.1. I

For m, m> 2, it is no longer the case that A = 2 and B = Z. Thus, in
order to apply Theorem 5.1, we need to find bounds on IIAII and IIBII in
terms of 11211 and 11211, respectively. It follows directly from (5.14) that

IIAII ~ IIG-'IIIIG '1111211, (5.17 )

with a similar inequality for IIBII. In general, we can give bounds on the
norms of G - I and G I only for special spline interpolation methods.

To illustrate the kinds of results which are possible, let m, m> 1 be
prescribed, and suppose L1 and J are the partitions defined in (5. t )-( 5.4 ).
Define

~i=Lv'+I+"'+Yi+m d/(m-I),

17j= U'J+ , + '" +Yj+m_,)/(m-I),

i= 1, ... , n,

j= I, ..., ii.

(5.18)

(5.19)

Let Gm and Gm be the associated collocation matrices; cf. (5.15). Then the
interpolation problem (5.12) has a unique solution. It is easy to see that
these choices of interpolation nodes satisfy the conditions (5.10), (5.11).

THEOREM 5.3. Let m = m= 3, and let T be defined in (2.1) using a and
b as defined in (5.5), (5.6) with coefficients A and B chosen so that (5.12),
(5.13) are satisfied on an equally spaced grid. Then T is one-to-one on H
provided that

and - {3
11211 < 18(ii - 2)' (5.20)

Proof It is shown in [13] that IIG}-'II ~ 3 and II G3 'II ~ 3. Thus (5.20)
implies (5.9), and the result follows from Theorem 5.1. I

THEOREM 5.4. Let m = m= 4, and let T he defined in (2.1) using a and
h as in (5.5), (5.6) with coefficients A and B chosen so that a and h inter-
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polate values Z and Z on an equally spaced grid (~i' f/j) as in (5.12), (5.13).
Then Tis one-lo-one on H provided that

C(

IIZII < 1458(n - 3) and IIZII < 1458~-3)' (5.21 )

Proof It is shown in [3] that IIG.;-III ~27 and IIG4~11I ~27. Combining
this with (5.17) implies (5.9), and the result follows from Theorem 5.1. This
result can be improved to allow a larger range of parameter values since
the bound of 27 for II G.;- III and II G.;- III is not sharp; it is conjectured that
a sharp bound is probably around 4 or 5. I

Similar results could be obtained for larger values of m if we had
estimates on the norms of the inverses of the corresponding matrices G;;, I.

Unfortunately, such estimates do not seem to be available.
There are many other spline interpolation operators which could be used

to define the perturbations a and b. We conclude this section with one
more example involving C I cubic splines which interpolate in the Hermite
sense (with zero derivative values).

THEOREM 5.5. Suppose we are given equally spaced grid points (C f/j),
for 1~ i ~ n and I ~j ~ n. For each 1~ i ~ n, let I,(x) be the unique
piecewise cubic C I f'!..nction ~hich satisfies Ii (~j) = (j if and I; (~j) = 0, for
all i, j= I, ..., n. Let II(Y)' ... , I;;(y) be tire analogous piecewise polynomial
functions vl'ith respect to tire '1/s. Then the perturbation functions a and h
defined in (3.1), (3.2) interpolate as in (4.4), (4.5), and the associated
mapping T is one-to-one on H whenever

IIAII <h16 and IIBII < h16. (5.22)

Proof Clearly these basis functions are positive and form a partition of
unity, and hence A = A= 1. In addition, it is easy to check that A' = 31h
and A' = 3/ii, where hand h are as in (5.7). The assertion now follows from
Theorem 3.2. I

5. REMARKS

Remark 1. For other approaches to building one-to-one mappings for
these kinds of applications, see [2, 18-20] and references therein.

Remark 2. The conditions in Theorem 3.2 are only sufficient condi
tions, and not necessary ones.
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Remark 3. For n = 2, 3, the points appearing in Theorem 4.3 are the
same points used in Theorems 4.1 and 4.2. It is known (cr. [15]) that the
general n, this choice of points minimizes the size of A'. They do not
simultaneously minimize the size of A, and indeed, the question of finding
the interpolation points which do remains open (cf. [4, 5, II]). Thus,
finding the largest possible constants in the conditions (4.6) of Theorem 4.3
is most likely a very difficult problem.

Remark 4. It is clear from the examples that, in general, as we increase
the complexity of our mapping functions by using a larger number of
parameters, the range of values of the parameters which assure the
mapping is one-to-one becomes smaller and smaller.

Remark 5. In the results of Sections 4 and 5, we have illustrated our
methods for the case where we use the same form of perturbation for both
a(x, y) and b(x, y). The general theory of Sections 2 and 3 allows the use
of different functions. Thus, for example, it is possible to use polynomials
of different degrees for a and b, or even polynomials for one perturbation
function, and splines for the other.

Remark 6. We have illustrated the method using polynomials and
splines, but in some applications it may be useful to use other basis
functions.

Remark 7. We have discussed only the case where H is a rectangle in
[R2. Clearly the same techniques can be applied when H is a parallelopiped
in [R3 or even a more general hypercube in [Rn.

ACKNOWLEDGMENT

We thank the referee for suggesting Theorem 4.3 and pointing out Ref. [15] which gives the
bounds on the A' and A' needed to prove it.

REFERENCES

1. R. BENSON. R. CHAPMAN, AND A. SIEGEL, On the measurement of morphology and its
change, Paleobiology 8 (1982), 328-339.

2. F. L. BOOKSTEIN, Principal warps: Thin-plate splines and the decomposition of deforma

tions, IEEE Trans. Geosci. Electron. 15 (1989), 567-585.
3. C. DE BooR, On bounding spline interpolation, J. Approx. Theory 14 (1975), 191-203.
4. C. DE BooR AND A. PINKUS, Proof of the conjecture of Bernstein and Erdos concerning

the optimal nodes for polynomial interpolation, J. Approx. Theory 24 (1978), 289-303.
S. L. BRUTMAN, On the Lebesgue function for polynomial interpolation, SIAM J. Numer.

Anal. 15 (1978), 694-704.



1-1 BIVARIATE TRANSFORMAnONS 53

6. G. FARlN, "Curves and Surfaces for Computer Aided Geometric Design," Academic Press,
New York, 1988.

7. J. M. FITZPATRICK, The existence of geometrical density-image transformations corre
sponding to object motion, Comput. Vision Graphics Image Process. 44 (1988), 155-175.

8. J. M. FITZPATRICK AND Y. GE, A set of one-to-one two dimensional biquadratic transfor
mations, manuscript, 1989.

9. J. M. FITZPATRICK AND M. R. LEUZE, A class of one-to-one two-dimensional transforma
tions, Comput. Vision Graphics Image Process 39 (1987), 369-382.

10. J. M. FITZPATRICK, D. PICKENS, 1. GREFENSTETTE, R. PRICE, AND E. JAMES, Techniques for
automatic motion correction in digital subtraction angiography, Opl. Engrg. 26 (1987),
1085-1093.

II. T. KILGORE, A characterization of the Lagrange interpolating projection with minimal
Tchebycheff norm, J. Approx. Theory 24 (1978), 273-288.

12. G. G. LoRENTZ, "Bernstein Polynomials," Toronto Press, Toronto, 1953.
13. M. J. MARSDEN, Quadratic spline interpolation, Bull. Amer. Math. Soc. 80 (1974),

903-906.
14. V. R. MANDAVA, J. M. FITZPATRICK, AND D. R. PICKENS, Adaptive search space scaling

in digital image registration, IEEE Trans. Med. Imaging 8 (1989), 251-262.
15. T. J. RrvLlN, Optimally stable Lagrangian numerical differentiation, SIAM 1. Numer.

Anal. 12 (1975), 712-725.
16. L. L. SCHUMAKER, "Spline Functions: Basic Theory," Wiley-Interscience, New York,

1981.
17. L. L. SCHUMAKER AND W. YOLK, Efficient algorithms for evaluating multivariate poly

nomials, Comput. Aided Geom. Design 3 (1986), 149-154.
18. P. VAN WIE AND M. STEIN, A Landsat digital image rectification system, IEEE Trans.

Geosci. Electron. 15 (1977),130-137.
19. A. VENOT, J. DEVAUX, M. HERBIN, J. LEBRUCHEC, L. DUBERTRET, Y. RAULO, AND

J. ROUCAYROL, An automated system for the registration and comparison of photographic
images in medicine, IEEE Trans. Med. Imaging 7 (1988), 298-303.

20. A. VENOT, J. LIEHN, J. LEBRUCHEC, AND J. ROUCAYROL, Automated comparison of
scintigraphic images, J. Nuclear Medicine 27 (1986), 1337-1342.

21. W. YOLK, An efficient raster evaluation method for univariate polynomials, Computing 40
(1988),163-173.


